Bernoulli systems

Sinai's factor theorem

Bernoulli decompositions and applications

Han Yu

University of St Andrews

A day in October

Bernoulli systems

Sinai's factor theorem

Outline

Equidistributed sequences

Bernoulli systems

Sinai's factor theorem

Sinai's factor theorem

A reminder

Let $\{x_n\}_{n\geq 1}$ be a sequence in [0, 1]. It is *equidistributed* with respect to the Lebesgue measure λ if for each (open or close or whatever) interval $I \subset [0, 1]$ we have the following result,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N \mathbb{1}_I(x_n) = \lambda(I).$$

Sinai's factor theorem

A reminder

Let $\{x_n\}_{n\geq 1}$ be a sequence in [0, 1]. It is *equidistributed* with respect to the Lebesgue measure λ if for each (open or close or whatever) interval $I \subset [0, 1]$ we have the following result,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N \mathbb{1}_I(x_n) = \lambda(I).$$

It is enough to check the above result for each interval with rational end points.

Sinai's factor theorem

A reminder

Let $\{x_n\}_{n\geq 1}$ be a sequence in [0, 1]. It is *equidistributed* with respect to the Lebesgue measure λ if for each (open or close or whatever) interval $I \subset [0, 1]$ we have the following result,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N \mathbb{1}_I(x_n) = \lambda(I).$$

It is enough to check the above result for each interval with rational end points.

It is also enough to replace the indicator function with a countable dense family of continuous functions in C([0, 1]).

Bernoulli systems

Sinai's factor theorem

Let's play a game

I will give you an equidistributed sequence $\{x_n\}_{n\geq 1}$ in [0,1] and a small number ρ , say, $\rho = 0.001$. You must choose a subsequence K of \mathbb{N} with upper density ρ and minimize the Lebesgue measure of $\overline{\{x_n\}_{n\in K}}$.

Sinai's factor theorem

Let's play a game

I will give you an equidistributed sequence $\{x_n\}_{n\geq 1}$ in [0,1] and a small number ρ , say, $\rho = 0.001$. You must choose a subsequence K of \mathbb{N} with upper density ρ and minimize the Lebesgue measure of $\overline{\{x_n\}_{n\in K}}$.

Bonus: Try to achieve that $\overline{\{x_n\}_{n\in K}}$ is nowhere dense.

Sinai's factor theorem

Let's play a game

I will give you an equidistributed sequence $\{x_n\}_{n\geq 1}$ in [0,1] and a small number ρ , say, $\rho = 0.001$. You must choose a subsequence K of \mathbb{N} with upper density ρ and minimize the Lebesgue measure of $\overline{\{x_n\}_{n\in K}}$.

Bonus: Try to achieve that $\overline{\{x_n\}_{n\in K}}$ is nowhere dense.

Award: You get 1000 Kinder Chocolate bars if you can let the Lebesgue measure drop below ρ .

Sinai's factor theorem

Let's play a game

I will give you an equidistributed sequence $\{x_n\}_{n\geq 1}$ in [0,1] and a small number ρ , say, $\rho = 0.001$. You must choose a subsequence K of \mathbb{N} with upper density ρ and minimize the Lebesgue measure of $\overline{\{x_n\}_{n\in K}}$.

Bonus: Try to achieve that $\overline{\{x_n\}_{n \in K}}$ is nowhere dense.

Award: You get 1000 Kinder Chocolate bars if you can let the Lebesgue measure drop below ρ .

Claim: This is a fair game.

Sinai's factor theorem

Let's play a game

I will give you an equidistributed sequence $\{x_n\}_{n\geq 1}$ in [0,1] and a small number ρ , say, $\rho = 0.001$. You must choose a subsequence K of \mathbb{N} with upper density ρ and minimize the Lebesgue measure of $\overline{\{x_n\}_{n\in K}}$.

Bonus: Try to achieve that $\overline{\{x_n\}_{n \in K}}$ is nowhere dense.

Award: You get 1000 Kinder Chocolate bars if you can let the Lebesgue measure drop below ρ .

Claim: This is a fair game. Or is it?

Sinai's factor theorem

A result

Lemma

Let $\{x_n\}_{n\geq 1}$ be an equidistributed sequence in [0,1]. Let $K \subset \mathbb{N}$ be a sequence with upper density ρ . Then $\overline{\{x_n\}_{n\geq K}}$ has Lebesgue measure at least ρ .

Sinai's factor theorem

A result

Lemma

Let $\{x_n\}_{n\geq 1}$ be an equidistributed sequence in [0,1]. Let $K \subset \mathbb{N}$ be a sequence with upper density ρ . Then $\overline{\{x_n\}_{n\geq K}}$ has Lebesgue measure at least ρ .

Proof.

There is a proof but there is no space for writing it down.

Sinai's factor theorem

Choose a random subsequence

Lemma

Let $\{x_n\}_{n\geq 1}$ be an equidistributed sequence in [0,1]. Let $K \subset \mathbb{N}$ be a sequence chosen randomly by including each integer $k \in K$ independently with probability $p \in (0,1)$. Then almost surely, $\{x_n\}_{n\in K}$ is dense in [0,1]. In fact, the new sequence equidistributes in [0,1] if it is enumerated properly.

Sinai's factor theorem

Choose a random subsequence

Lemma

Let $\{x_n\}_{n\geq 1}$ be an equidistributed sequence in [0,1]. Let $K \subset \mathbb{N}$ be a sequence chosen randomly by including each integer $k \in K$ independently with probability $p \in (0,1)$. Then almost surely, $\{x_n\}_{n\in K}$ is dense in [0,1]. In fact, the new sequence equidistributes in [0,1] if it is enumerated properly.

Remark

This holds no matter how small p is.

Another reminder

Definition (Bernoulli system)

Let Λ be a finite set of digits. Consider the space $\Omega = \Lambda^{\mathbb{N}}$ equipped with the product topology and the cylinderical σ -algebra. Given a probability measure (vector) p on Λ we also define the product probability measure ν on Ω . Let $S : \Omega \to \Omega$ be the left shift. Then (Ω, S, ν) mixing and we call it a Bernoulli system.

Another reminder

Definition (Bernoulli system)

Let Λ be a finite set of digits. Consider the space $\Omega = \Lambda^{\mathbb{N}}$ equipped with the product topology and the cylinderical σ -algebra. Given a probability measure (vector) p on Λ we also define the product probability measure ν on Ω . Let $S : \Omega \to \Omega$ be the left shift. Then (Ω, S, ν) mixing and we call it a Bernoulli system.

The measure theoretic entropy of (Ω, S, ν) is equal to

$$-\sum_{\lambda\in\Lambda}p_{\lambda}\log p_{\lambda},$$

where $p_{\lambda}, \lambda \in \Lambda$ is the probability vector on Λ which gives the measure ν on Ω .

Sinai's factor theorem

Theorem

Let $K \subset \mathbb{N}$ be a sequence with upper density ρ . Let $\Omega_1, \ldots, \Omega_M$ be pairwise disjoint measurable events. Suppose that $\Omega_1 \cup \cdots \cup \Omega_M$ has measure at least $1 - \epsilon$ and $\epsilon < \rho$. Then for ν almost all $\omega \in \Omega$, there is an index $i(\omega) \in \{1, \ldots, M\}$ such that $\overline{\{x_n\}_{n \in K \cap K_{\Omega_{i(\omega)}}(\omega)}}$ has Lebesgue measure at least $\rho - \epsilon$.

Notation: $K_{\Omega'}(\omega) = \{k : S^k(\omega) \in \Omega'\}$ (Entering sequence)

Sinai's factor theorem

Theorem

Let $K \subset \mathbb{N}$ be a sequence with upper density ρ . Let $\Omega_1, \ldots, \Omega_M$ be pairwise disjoint measurable events. Suppose that $\Omega_1 \cup \cdots \cup \Omega_M$ has measure at least $1 - \epsilon$ and $\epsilon < \rho$. Then for ν almost all $\omega \in \Omega$, there is an index $i(\omega) \in \{1, \ldots, M\}$ such that $\overline{\{x_n\}_{n \in K \cap K_{\Omega_{i(\omega)}}(\omega)}}$ has Lebesgue measure at least $\rho - \epsilon$.

Notation: $K_{\Omega'}(\omega) = \{k : S^k(\omega) \in \Omega'\}$ (Entering sequence) Main point: $\Omega_i, i \in \{1, \dots, M\}$ can have very small measures. Convince yourself by choosing $K = \mathbb{N}$, in this case the result trivially holds in a much stronger sense.

Sinai's factor theorem

Theorem

Let $K \subset \mathbb{N}$ be a sequence with upper density ρ . Let $\Omega_1, \ldots, \Omega_M$ be pairwise disjoint measurable events. Suppose that $\Omega_1 \cup \cdots \cup \Omega_M$ has measure at least $1 - \epsilon$ and $\epsilon < \rho$. Then for ν almost all $\omega \in \Omega$, there is an index $i(\omega) \in \{1, \ldots, M\}$ such that $\overline{\{x_n\}_{n \in K \cap K_{\Omega_{i(\omega)}}(\omega)}}$ has Lebesgue measure at least $\rho - \epsilon$.

Notation: $K_{\Omega'}(\omega) = \{k : S^k(\omega) \in \Omega'\}$ (Entering sequence) Main point: $\Omega_i, i \in \{1, \dots, M\}$ can have very small measures. Convince yourself by choosing $K = \mathbb{N}$, in this case the result trivially holds in a much stronger sense.

Proof.

Cuius rei demonstrationem mirabilem sane detexi hanc marginis exiguitas non caperet.

Sinai's factor theorem ●○○○

Sinai's factor theorem

Definition (Factor)

A measurable dynamical system is in general denoted as (X, \mathcal{X}, S, μ) where X is a set with σ -algebra \mathcal{X} and measure μ and a measurable map $S : X \to X$. Given two dynamical systems $(X, \mathcal{X}, S, \mu), (X_1, \mathcal{X}_1, S_1, \mu_1)$, a measurable map $f : X \to X_1$ is called a factorization map and $(X_1, \mathcal{X}_1, S_1, \mu_1)$ is called a factor of (X, \mathcal{X}, S, μ) if $\mu_1 = f\mu$ and $f \circ S = S_1 \circ f$.

Theorem

Given an ergodic dynamical system (X, T, μ) with positive entropy $h(T, \mu) > 0$, any Bernoulli system (Ω, S, ν) with entropy $h(S, \nu) \leq h(T, \mu)$ is a factor of (X, T, μ) .

Bernoulli systems

Sinai's factor theorem ○●○○

A motivating exercise

Let α be an irrational number and d is an arbitrary real number. Try to compute the (upper/lower) box dimension of the sequence $\{n\alpha + 2^n d\}_{n \ge 1}$.

Bernoulli systems

Sinai's factor theorem ○●○○

A motivating exercise

Let α be an irrational number and d is an arbitrary real number. Try to compute the (upper/lower) box dimension of the sequence $\{n\alpha + 2^n d\}_{n \ge 1}$. Hint: Consider the case for d being of 'zero entropy' and then use Sinai's factor theorem to treat the case for the 'positive entropy' case.

Bernoulli systems

Sinai's factor theorem $\circ \circ \bullet \circ$

A challenging exercise

Let $L \subset [0, 1]$ be a compact set. Define the following *sparseness* indicating sequence of L around $a \in L$,

$$W(L, a) = \{k \in \mathbb{N} : \exists b \in L, |b - a| \in [2^{-k}, 2^{-k+1}]\}.$$

Bernoulli systems

Sinai's factor theorem ○○●○

A challenging exercise

Let $L \subset [0, 1]$ be a compact set. Define the following *sparseness* indicating sequence of L around $a \in L$,

$$W(L, a) = \{k \in \mathbb{N} : \exists b \in L, |b - a| \in [2^{-k}, 2^{-k+1}]\}.$$

We say that L is sparse if the upper density of W(L, a) is 0 for all $a \in L$.

Sinai's factor theorem ○○●○

A challenging exercise

Let $L \subset [0, 1]$ be a compact set. Define the following *sparseness indicating sequence* of *L* around $a \in L$,

$$W(L, a) = \{k \in \mathbb{N} : \exists b \in L, |b - a| \in [2^{-k}, 2^{-k+1}]\}.$$

We say that *L* is sparse if the upper density of W(L, a) is 0 for all $a \in L$. Let $A_2, A_3 \subset [0, 1]$ be $\times 2, \times 3$ invariant closed sets respectively. Show that $L = A_2 \cap A_3$ is sparse if dim_H A_2 + dim_H $A_3 < 1$.

Sinai's factor theorem $\circ \circ \bullet \circ$

A challenging exercise

Let $L \subset [0, 1]$ be a compact set. Define the following *sparseness indicating sequence* of *L* around $a \in L$,

$$W(L, a) = \{k \in \mathbb{N} : \exists b \in L, |b - a| \in [2^{-k}, 2^{-k+1}]\}.$$

We say that *L* is sparse if the upper density of W(L, a) is 0 for all $a \in L$. Let $A_2, A_3 \subset [0, 1]$ be $\times 2, \times 3$ invariant closed sets respectively. Show that $L = A_2 \cap A_3$ is sparse if dim_{*H*} $A_2 + \dim_H A_3 < 1$.

Remark

This implies that $\dim_H L = 0$. (A recent result by Wu and by Shmerkin)

Sinai's factor theorem $\circ \circ \circ \bullet$

Thanks.

P.S. The solutions of the exercises can be provided upon request.