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A reminder

Let {xn}n≥1 be a sequence in [0, 1]. It is equidistributed with
respect to the Lebesgue measure λ if for each (open or close or
whatever) interval I ⊂ [0, 1] we have the following result,

lim
N→∞

1

N

N∑
n=1

1I (xn) = λ(I ).

It is enough to check the above result for each interval with
rational end points.
It is also enough to replace the indicator function with a countable
dense family of continuous functions in C ([0, 1]).
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Let’s play a game

I will give you an equidistributed sequence {xn}n≥1 in [0, 1] and a
small number ρ, say, ρ = 0.001. You must choose a subsequence K
of N with upper density ρ and minimize the Lebesgue measure of
{xn}n∈K .

Bonus: Try to achieve that {xn}n∈K is nowhere dense.
Award: You get 1000 Kinder Chocolate bars if you can let the
Lebesgue measure drop below ρ.
Claim: This is a fair game. Or is it?
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A result

Lemma

Let {xn}n≥1 be an equidistributed sequence in [0, 1]. Let K ⊂ N be
a sequence with upper density ρ. Then {xn}n≥K has Lebesgue
measure at least ρ.

Proof.

There is a proof but there is no space for writing it down.
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Choose a random subsequence

Lemma

Let {xn}n≥1 be an equidistributed sequence in [0, 1]. Let K ⊂ N be
a sequence chosen randomly by including each integer k ∈ K
independently with probability p ∈ (0, 1). Then almost surely,
{xn}n∈K is dense in [0, 1]. In fact, the new sequence equidistributes
in [0, 1] if it is enumerated properly.

Remark

This holds no matter how small p is.
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Another reminder

Definition (Bernoulli system)

Let Λ be a finite set of digits. Consider the space Ω = ΛN

equipped with the product topology and the cylinderical σ-algebra.
Given a probability measure (vector) p on Λ we also define the
product probability measure ν on Ω. Let S : Ω→ Ω be the left
shift. Then (Ω, S , ν) mixing and we call it a Bernoulli system.

The measure theoretic entropy of (Ω,S , ν) is equal to

−
∑
λ∈Λ

pλ log pλ,

where pλ, λ ∈ Λ is the probability vector on Λ which gives the
measure ν on Ω.
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Theorem

Let K ⊂ N be a sequence with upper density ρ. Let Ω1, . . . ,ΩM be
pairwise disjoint measurable events. Suppose that Ω1 ∪ · · · ∪ ΩM

has measure at least 1− ε and ε < ρ. Then for ν almost all ω ∈ Ω,
there is an index i(ω) ∈ {1, . . . ,M} such that {xn}n∈K∩KΩi(ω)

(ω)

has Lebesgue measure at least ρ− ε.

Notation: KΩ′(ω) = {k : Sk(ω) ∈ Ω′} (Entering sequence)

Main point: Ωi , i ∈ {1, . . . ,M} can have very small measures.
Convince yourself by choosing K = N, in this case the result
trivially holds in a much stronger sense.

Proof.

Cuius rei demonstrationem mirabilem sane detexi hanc marginis
exiguitas non caperet.
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Sinai’s factor theorem

Definition (Factor)

A measurable dynamical system is in general denoted as
(X ,X ,S , µ) where X is a set with σ-algebra X and measure µ and
a measurable map S : X → X . Given two dynamical systems
(X ,X ,S , µ), (X1,X1, S1, µ1), a measurable map f : X → X1 is
called a factorization map and (X1,X1,S1, µ1) is called a factor of
(X ,X ,S , µ) if µ1 = f µ and f ◦ S = S1 ◦ f .

Theorem

Given an ergodic dynamical system (X ,T , µ) with positive entropy
h(T , µ) > 0, any Bernoulli system (Ω,S , ν) with entropy
h(S , ν) ≤ h(T , µ) is a factor of (X ,T , µ).
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A motivating exercise

Let α be an irrational number and d is an arbitrary real number.
Try to compute the (upper/lower) box dimension of the sequence
{nα + 2nd}n≥1.

Hint: Consider the case for d being of ‘zero entropy’ and then use
Sinai’s factor theorem to treat the case for the ‘positive entropy’
case.
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A challenging exercise

Let L ⊂ [0, 1] be a compact set. Define the following sparseness
indicating sequence of L around a ∈ L,

W (L, a) = {k ∈ N : ∃b ∈ L, |b − a| ∈ [2−k , 2−k+1]}.

We say that L is sparse if the upper density of W (L, a) is 0 for all
a ∈ L.
Let A2,A3 ⊂ [0, 1] be ×2,×3 invariant closed sets respectively.
Show that L = A2 ∩ A3 is sparse if dimH A2 + dimH A3 < 1.

Remark

This implies that dimH L = 0. (A recent result by Wu and by
Shmerkin)
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Thanks.
P.S. The solutions of the exercises can be provided upon request.
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