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ABSTRACT. In this note we present a proof showing that the only infinite
closed subset of [0, 1] which is invariant under ×2,×3 mod 1 actions is
the whole interval [0, 1]. Here we will first illustrate a proof by Fursten-
berg in [Fu, Part IV] and then provide a slightly different approach which
leads to an elementary and short proof.

1. FURSTENBERG’S PROOF

1.1. Semi-group actions, invariant subsets, Furstenberg’s Nakayama-type
lemma. Let S ⊂ N be a multiplicative semi-group of integers. More pre-
cisely,

s1, s2 ∈ S =⇒ s1s2 ∈ S.
For subset A ⊂ [0, 1], we call A invariant under S-action if

∀s ∈ S,∀a ∈ A, s(a) = {sa} ∈ A,

where {x} is the fractional part of x ∈ [0,∞). For any x ∈ [0, 1], we denote
the orbit OrbS(x) = {s(x) : s ∈ S} and we say that a closed S-invariant
set A ⊂ [0, 1] is minimal (or S acts minimally on A) if for all x ∈ A the
orbitOrbS(x) is dense inA. Given any closed S-invariant setA, it is always
possible to find (possibly more than one) Am ⊂ A such that Am is minimal
with respect to S (Zorn’s lemma).

The S-action on [0, 1] turns it into a S-group (similar with modules but
with semi-group action instead of ring action) in the sense that for s1, s2 ∈
S, x1, x2 ∈ [0, 1]

(s1, s2,+)(x1, x2) = {s1x1 + s2x2}.
Notice that given any ring R and a R-module M , we can write the ring
action in a similar way

(r1, r2,+)(m1,m2) = r1m1 + r2m2.

Now we shall focus on the multiplicative sub semi-group of N generated
by 2, 3. We note that results in this note hold for other semi-groups and
more general phase space other than [0, 1] (for example the d-torus). The
next result is a Nakayama-type lemma due to Furstenberg [Fu, Proposition
IV.1].

Lemma 1.1. LetM,B be two closed S-invariant subsets of [0, 1]. IfM is minimal
under action S and M +B mod 1 = [0, 1] then B = [0, 1].
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Remark 1.2. Nakayama’s lemma says that for a commutative ring R with Jacob-
son ideal J , given any finite generated R-module N , and any submodule M ⊂ N,
the following holds

N =M + JM =⇒ M = N.

Proof. It is easy to check that 2, 3 are primitive roots modulo 5. More pre-
cisely, for k = 0, 1, 2, 3, . . .

2k ≡ 1, 2, 4, 3, 1, 2, 4, 3 . . . mod 5.

Similar result holds for 3k, k ∈ N as well. Some further number theoretic
argument can deduce that 2, 3 are primitive roots modulo 5K for all integer
K ≥ 1( (Z/5KZ)∗ is cyclic). Now we consider rational numbers with de-
nominator 5K ,K ∈ N (or 5-adic numbers). More precisely we consider the
following set

A5(K) = {a5−K : ∃a ∈ [0, 5K ] ∩ N}.
Notice that if m is an integer such that m ≡ 1 mod 5K , then ×m mod 1
acts as the identity on A5(K). Now let us consider the sub action of S
defined as follows

S(K) = {s ∈ S : s ≡ 1 mod 5K}.
Then we see that S(K) is an infinite sub semi-group of S. Indeed, for any
s ∈ S there exist infinitely many integer n such that

sn ≡ 1 mod 5K .

Now we can find a closed subset ofM which is minimal under action S(K)
and denote it as M(K). We want to show that M(K) is not too small. Now
define the following ’cosets’ of S(K)

S(K, r) = {s ∈ S : s ≡ r mod 5K}, r ∈ {1, 2, . . . , 5K − 1}.
Clearly, we only need to consider r to be one of the residues of S modulo
5K . We write the residue set as S5K . For each of those residue r we can find
a smallest integer s(r) ∈ S such that s(r) ≡ r mod 5K . As a result we see
that s(r)M(K) is minimal under S(K). We write now the following set

M ′ =
⋃

r∈S
5K

s(r)M(K).

Clearly M ′ is closed and it is a finite union of minimal sets. Let s ∈ S and
r ∈ S5K and we consider ss(r)M(K). Suppose that s ≡ t mod 5K and then
ss(r) ≡ tr mod 5K . Therefore ss(r) ∈ S(K, rt). Let s(rt)l ≡ 1 mod 5K ,
then ss(r)sl(rt) ∈ ss(r)S(K) and ss(r)sl−1(rt) ∈ S(K). Then as M(K) is
S(K) invariant we see that

ss(r)s(rt)sl−1(rt)M(K) ⊂ s(rt)M(K).

In particular we have found x ∈ ss(r)M(K) ∩ s(rt)M(K) and because of
the minimality of ss(r)M(K), s(st)M(K) under S(K) we see that

ss(r)M(K) = s(st)M(K).

Indeed, we only need to consider OrbS(K)(x) and it is dense in ss(r)M(K)
as well as s(st)M(K). This implies that M ′ is invariant under S action and
because M ′ ⊂M and M is minimal under S we see that M ′ =M .
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Since M +B = [0, 1] and M =
⋃
r∈S

5K
s(r)M(K) we see that at least one

of s(r)M(K) is such that s(r)M(K) + B has positive Lebesgue measure.
Notice that s(r)M(K) + B is invariant under S(K)-action and in particu-
lar invariant under the ×m mod 1 action for any integer m ∈ S(K) and
therefore s(r)M(K)+B has full Lebesgue measure and because it is closed
we see that s(r)M(K) + B = [0, 1]. This means that for all x ∈ [0, 1] we
can find a ∈ s(r)M(K), b ∈ B such that a+ b mod 1 = x. Now we choose
x ∈ A5(K) and apply S(K)-action on the equation

a+ b = x mod 1

Now fix any a0 ∈ s(r)M(K). Since S(K) acts as identity on A5(K) and
minimally on s(r)M(K) we can find a sequence si ∈ S(K), i ∈ N such that

si(a)→ a0, si(b)→ b′ ∈ B, si(x)→ x.

Notice that the equality s(a)+s(b) = s(x) = x mod 1 holds for all s ∈ S(K)
and we see that

a0 + b′ = x.

This implies that a0 + B is 5−K-dense in [0, 1]. Then because K can be
chose arbitrarily we see that B is dense in [0, 1]. Since B is closed we see
that B = [0, 1]. �

1.2. irrational rotation and closed ×2,×3 invariant sets.

Lemma 1.3. Let A ⊂ [0, 1] be a closed S-invariant set where S is the multiplica-
tive semi-group generated by {2, 3}. If 0 ∈ A is not isolated then A = [0, 1].

Proof. Consider intervals Ik = [0, 3−k], k ∈ N. Since 0 ∈ A is not isolated we
can find infinitely many k ∈ N and ak ∈ A such that

ak ∈ Ik \ Ik+1.

Then 2k13k2ak ∈ A for all k1, k2 such that 2k13k2 ≤ 3k+1. By taking loga-
rithm we see that

k1 log 2 + k2 log 3 + log ak ∈ log(A \ {0}).
Or equivalently we have for all k1, k3 with k1 log 2− k3 log 3 ≤ log 3

log 3kak + k1 log 2− k3 log 3 ∈ log(A \ {0}).
Now we can choose integers k1, k3 in a dynamical way. Let k1(0) = 0, k3(0) =
0 be our initial state. We define now the following map

T (x, y) =

{
(x+ 1, y), if (x+ 1) log 2− y log 3 ≤ log 3

(x+ 1, y + 1), if (x+ 1) log 2− y log 3 > log 3.

Now we choose (k1(i), k3(i)) = T i(0, 0) for integers i ≤ bk log 3
log 2c. Then

we see that k1(i), k3(i) satisfy the condition 2k1(i)3k2(i) ≤ 3k+1 for k2(i) =
k − k3(i) and k2(i) ≥ 0. Then we see that

α(i) = k1(i) log 2− k3(i) log 3 = {i log 2/ log 3} log 3.

As log 2/ log 3 is irrational we see that if k is large enough α(i), i ≤ bk log 3
log 2c

will be eventually dense enough. More precisely, for any ε > 0 there is
a N(ε) > 0 such that α(i), i ≤ N(ε) is ε-dense in [0, log 3]. Now choose a
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k such that k ≥ N(ε) we see that for k1, k2 running over all choices with
2k13k2 ≤ 3k+1 the following set

{log(2k13k3ak)}k1,k2 as stated above

is ε dense in log 3kak + [0, log 3]. Now notice that 3kak ∈ [1/3, 1] and exp(.)
is smooth on [1/3, 1], we see that there is δ(ε) = O(ε) such that

exp {log(2k13k3ak)}k1,k2 as stated above

is δ(ε)-dense in [1, 3]. Here δ(ε) = 100ε is a valid choice. Then after perform-
ing the mod 1 operation we see that A is 100ε-dense in [0, 1], then because
ε > 0 can be chosen arbitrarily we see that A is dense and therefore equal
to [0, 1] because A is closed. �

Now we can finally conclude the following result.

Theorem 1.4. Let A ⊂ [0, 1] be a closed S-invariant set where S is the multi-
plicative semi-group generated by {2, 3}. If A is infinite then A = [0, 1].

Proof. Since A is infinite we see that A − A is a closed S-invariant set and
0 ∈ A−A is not isolated. Then we see that A−A = [0, 1]. If we assume that
A is minimal under S then by Lemma 1.1,A = [0, 1]. IfA is not minimal, we
conclude that any minimal subset Am of A is either [0, 1] or else Am − Am
does not contain 0 as a non-isolated point. In the later case Am must be
finite. Then it is easy to see that Am cannot contain irrational numbers. In
the former case Am = [0, 1], but this is certainly not a minimal set under
S because 1/2 ∈ Am and OrbS(1/2) = {0, 1/2, 1} is a proper closed subset
invariant under action S. We conclude that all minimal subsets of A are
finite and consist only rational numbers.

If A contains only rational numbers then A − A can not be [0, 1] and
therefore A is finite. If A contains an irrational number ζ ∈ (0, 1), then we
consider the orbit OrbS(ζ) which consists only irrational numbers. How-
ever Aζ = OrbS(ζ) is closed and S-invariant therefore it contains a mini-
mal subset A′ ⊂ Aζ . Then we see that A′ consists finitely many rational
numbers. Therefore Aζ contains a rational number p/q. Then qAζ contains
0 as a non-isolated point, thus qAζ mod 1 = [0.1]. This implies that qA
mod 1 = [0, 1]. Thus A has positive Lebesgue measure and therefore full
Lebesgue measure and therefore A = [0, 1]. �

2. A SLIGHTLY DIFFERENT PROOF

We now provide a different proof without using Lemma 1.1. We will
borrow the (elementary) argument in the proof of Lemma 1.3. From there,
(just as the first step in the proof of Theorem 1.4) we could easily conclude
that A−A = [0, 1]. From here, our argument differs slightly.

Without loss of generality, we assume that A is the orbit closure of S
with an irrational stating point. This implies that A cannot contain isolated
rational points.

Take an integer l ≥ 10. Take a ∈ A such that there is b ∈ A with a − b =
5−l. Such pairs exist as we just showed. Now take integers k1, k2 such that
2k1 ≡ 3k2 ≡ 1 mod 5l (cyclicity of the multiplicative group of units in
Z/5lZ). Then take S′ to be the semi-group generated by 2k1 , 3k2 . For each
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s ∈ S′, s(a)−s(b) = 5−l. From here we conclude that for each x ∈ OrbS′(a),
there is a point y ∈ A with x− y = 5−l. We want to take an irrational point
in OrbS′(a). This is possible as long as we can choose a to be irrational. If a
is rational, then it is not isolated in A. This in turn implies that A = [0, 1].
So without loss of generality, we can assume that a is irrational. By using
the argument in the proof of Lemma 1.3 again for times 2k1 , 3k2 actions,
we conclude that OrbS′(a) − OrbS′(a) = [0, 1]. We can then find a point
a′ ∈ OrbS′(a) with points b′, b′′ ∈ OrbS′(a) such that

a′ − b′ = 5−l, a′ − b′′ = 2× 5−l.

We can take a′ to be irrational, otherwise, if a′ is rational, then it is not iso-
lated (in OrbS′(a) ⊂ A) and we conclude that A = [0, 1]. We then perform
the above argument one more time to obtain point a′′ inAwith the property
that a′′ + k5−l ∈ A for k = 0, 1, 2. If the above argument can be performed
indefinitely for infinitely many l ≥ 10, we then find in A, 5−l-dense subsets
of [0, 1]. This implies that A = [0, 1]. If the above argument cannot be per-
formed as in above, then we can find a rational non-isolated point in A and
this forces A = [0, 1]. From here the proof finishes.

REFERENCES

[Fu] H. Furstenberg Disjointness in Ergodic Theory, Minimal Sets, and a Problem in
Diophantine Approximation, MATHEMATICAL SYSTEMS THEORY, Vol. I, No.
l.

HAN YU, SCHOOL OF MATHEMATICS & STATISTICS, UNIVERSITY OF ST ANDREWS, ST
ANDREWS, KY16 9SS, UK,

E-mail address: hy25@st-andrews.ac.uk


	1. Furstenberg's proof
	1.1. Semi-group actions, invariant subsets, Furstenberg's Nakayama-type lemma
	1.2. irrational rotation and closed 2,3 invariant sets

	2. A slightly different proof
	References

